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Figure 1: Our method enables high-level editing of outdoor photographs. In this example, the user provides an input image (left) and six
attribute queries corresponding to the desired changes, such as more “autumn”. Our method hallucinates six plausible versions of the scene
with the desired attributes (right), by learning local color transforms from a large dataset of annotated outdoor webcams.

Abstract

We live in a dynamic visual world where the appearance of scenes
changes dramatically from hour to hour or season to season. In
this work we study “transient scene attributes” – high level prop-
erties which affect scene appearance, such as “snow”, “autumn”,
“dusk”, “fog”. We define 40 transient attributes and use crowd-
sourcing to annotate thousands of images from 101 webcams. We
use this “transient attribute database” to train regressors that can
predict the presence of attributes in novel images. We demonstrate
a photo organization method based on predicted attributes. Finally
we propose a high-level image editing method which allows a user
to adjust the attributes of a scene, e.g. change a scene to be “snowy”
or “sunset”. To support attribute manipulation we introduce a novel
appearance transfer technique which is simple and fast yet compet-
itive with the state-of-the-art. We show that we can convincingly
modify many transient attributes in outdoor scenes.
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1 Introduction

The appearance of an outdoor scene changes dramatically with
lighting, weather, and season. Fog might roll into a city as night
falls, tree branches in a forest can be dusted with light snow, and
an overcast day can clear into a gorgeous sunset. The visual world
we live in is captivating because of these constant changes. A great
deal of photography focuses on capturing images when these tran-
sient properties are interesting, unusual, or striking. This paper is
the first large scale study of “transient scene attributes” which in-
fluence scene appearance. We address questions such as: How ac-
curately can we recognize them? Can we modify scenes to change
these properties?

To support these experiments we annotate thousands of images to
create the Transient Attribute Database. A key property of the
database is that rather than using unrelated images we sample pho-
tographs from 101 webcam sequences. This allows us to reason
about intra-scene attribute changes. We can observe how a par-
ticular mountain scene changes with season or how a particular
city scene changes with weather. These examples of intra-scene
attribute variations will drive our attribute manipulation approach.
We focus on outdoor scenes because they vary in more ways than
indoor scenes (e.g. weather and seasons).

The Transient Attribute Database uses a taxonomy of 40 attributes
related to weather (e.g. “cold” and “snow”), lighting (e.g. “sunny”),
time of day (e.g. “dawn / dusk”), season (e.g. “autumn”), and
more subjective impressions (e.g. “mysterious” and “soothing”).
While some of these scene properties could be derived from ground
truth meteorological data (e.g. when the temperature is above the
threshold we consider the scene “hot”) we instead annotate each
attribute manually. Thus our attributes are perceptual in nature. We
use a carefully cultivated pool of crowdsourced workers to annotate
each image with independent attribute labels.

We use our database to train and evaluate regressors which predict
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the degree to which each attribute is present in a novel scene. We
demonstrate that these predicted attributes can be used for photo
organization and browsing.

The most ambitious goal of our study is to edit images with a simple
user interface based on transient attributes (“make this image look
more sunny and snowy”). Given a particular image to edit and a
particular set of desired attributes, we learn how to change scene
appearance from the transformations observed in our database.

We make the following contributions:
• We construct a dataset of 101 outdoor webcams containing

images captured over long time spans which exhibit drastic
changes in appearance. We align all images and use crowd-
sourcing to label them with attribute values (Section 3).

• We train regressors to recognize transient attributes in new
images of outdoor scenes (Section 4).

• We enable high-level image editing through a simple interface
in which users specify which attributes they want to change in
a photograph (Section 5).

• We develop an example-based method to transfer drastic ap-
pearance changes observed in our database to a new input im-
age (Section 6).

We make our Transient Attribute Database and our attribute predic-
tors publicly available on the project website.

2 Related work

Attributes-based representations. Attributes are human-
nameable concepts for high-level descriptions of visual phenom-
ena. They stand in contrast to the more common categorical
representations used to describe objects, scenes, activities, textures,
etc. Attributes have recently emerged as a popular representation
in the computer vision community, particularly for objects [Ferrari
and Zisserman 2007; Farhadi et al. 2009] but more recently
for scenes [Parikh and Grauman 2011], as well. Most closely
related to our work is the SUN attribute database in which Patter-
son and Hays [2012] introduce 102 discriminative scene attributes.
However, those attributes are designed to distinguish between
scene categories (e.g. the functional attribute “eating” distinguishes
a conference room from a cafeteria) and thus describe inter-scene
variations. Instead, we focus on attributes for intra-scene variations
– the appearance changes within one scene under varied conditions.
Our ultimate goal is to manipulate transient attributes, and the
attribute taxonomy in the SUN attribute database is inappropriate
for this purpose because few of the attributes are dynamic.

We demonstrate the use of transient scene attributes for organiz-
ing photo collections which is similar to other uses of attributes for
searching faces [Kumar et al. 2011], sky images [Tao et al. 2009],
and objects [Kovashka et al. 2012]. Kovashka et al. [2012] also
search scenes but only use a handful of static attributes (e.g. “man-
made”). High level attributes have even been defined for BRDF
appearance models to support navigation and manipulation within
the space of valid BRDFs [Matusik et al. 2003].

Some of our attributes are subjective in nature (e.g. “soothing”).
Along these lines, there has been prior work on recognizing subjec-
tive attributes such as photo quality or interestingness [Dhar et al.
2011]. There has also been work to enhance these subjective qual-
ities in photographs [Kang et al. 2010; Caicedo et al. 2011; By-
chkovsky et al. 2011].

Scene appearance variations. Garg et al. [2009] analyze the
dimensionality of the space of scene appearance variations. Mul-
tiple photographs of the same scene captured from different view-

points or at different times of day enable 3D navigation in the vir-
tual scene [Snavely et al. 2006], and relighting [Yu and Malik 1998;
Laffont et al. 2012]. Sunkavalli et al. [2007] model illumination
changes from a single viewpoint. However, none of these methods
relate appearance changes to high-level, nameable attributes.

Example-based appearance transfer A common method to
guide changes to scene appearance is by providing a second exam-
ple image with the desired properties. Global color transfer meth-
ods apply a global transformation on an input image to match color
statistics of the example [Reinhard et al. 2001; Pitié et al. 2005].
They work well when the input and example images depict sim-
ilar scenes or for hallucinating night images, but do not account
for spatial layout of the scene. Other methods incorporate user in-
put [An and Pellacini 2010; Pouli and Reinhard 2011] or a large
database [Dale et al. 2009] to guide the color transfer. More re-
cently, Cusano et al. [2012] transfer local color between regions an-
notated with the same class, and Wu et al. [2013] separately transfer
the color style of each semantic region. Bonneel et al. [2013] use
color transforms to transfer visual styles across videos.

Instead of using a single example image, image transformations can
be learned by analogy from a pair of example images [Hertzmann
et al. 2001]. Like our work, the closely related method by Shih et
al. [2013] learns to manipulate scenes from a database of webcam
sequences in an analogy-based framework. However, it focuses on
a particular scene attribute – time of day. We propose a new appear-
ance transfer technique and compare with Shih et al. in Section 6.

High-level image editing. Our work belongs to a growing body
of research which focuses on allowing users to direct image ma-
nipulation with high-level, semantic guidance rather than low-level
control. This is appealing because it allows non-expert users to
perform image synthesis or manipulation operations that are his-
torically only available to experts and artists. For example, Photo
clip Art [Lalonde et al. 2007] allow users to insert common object
types (e.g. ‘car’) into existing scenes by finding objects which are
compatible with the scene from a large database.

Berthouzoz et al. [2011] enable high-level image editing by adapt-
ing existing macros (e.g. sequences of recorded Photoshop opera-
tions) to novel scenes. Many of their manipulations are object- or
human-centric but they also demonstrate scene manipulations sim-
ilar to ours such as adding snow. However, their method adds snow
by intelligently replaying a sequence of artistic operations whereas
we are learning what it means to become snowy from annotated
example scenes which undergo a snowy transformation.

CG2real [Johnson et al. 2011] adds realism to computer generated
images by transferring color and texture from real photographs.
This could be thought of as scene attribute manipulation in the case
of one attribute – realism. Likewise there are other methods built to
change one particular high level attribute of a scene, e.g. the amount
of haze in the atmosphere [Fattal 2008]. The key distinguishing
factor of our work is that we aim to have a common framework to
manipulate many dynamic properties of scenes based on what we
learn from our image database.

Like our work, Cheng et al. [2014] recognize and manipulate at-
tributes in images. However, they focus on object-centric attributes
in indoor scenes (e.g. make the brown couch red) and do not em-
phasize learning the attribute manipulations from data.

Image datasets and webcams. A significant contribution of
this paper is the crowdsourced annotation of a new database of dy-
namic scenes. In the past decade graphics research has come to rely



more on such image databases. For example, crowdsourcing has en-
abled object insertion in Photo Clip Art [Lalonde et al. 2007], anal-
ysis and recognition of human object sketches [Eitz et al. 2012], and
extensive surface appearance reference data in [Bell et al. 2013].

Our database uses sequences from the Webcam clipart [Lalonde
et al. 2009] and AMOS [Jacobs et al. 2007] databases, which we
augment with crowdsourced annotations of many scene attributes.
Shih et al. [2013] construct a database of 450 high quality time-
lapses which cover short time spans, exhibiting mostly lighting
changes due to time of day. Like in our work, Narasimhan et
al. [2002] link scene appearance changes over several months to
weather and lighting properties, but their database includes only a
single urban scene and the annotations are generated automatically
from meteorological data. We describe how we gather and annotate
our Transient Attribute Database in the next section.

3 The Transient Attribute Database

The first difficulty in studying outdoor appearance changes is the
lack of high-quality images from static viewpoints captured over
long periods of time and indexed by the transient properties they
exhibit. In order to construct such a dataset, we select a subset
of outdoor webcams from two existing sources: the Archive of
Many Outdoor Scenes [Jacobs et al. 2007] and the Webcam Clip
Art Dataset [Lalonde et al. 2009]. Images in our dataset exhibit the
following properties:
Large variations within each scene: for each webcam, we select

60-120 high quality frames that are representative of the ap-
pearance variations of the scene; all images are manually re-
viewed to ensure they do not exhibit serious artifacts such as
excessive noise, quantization artifacts, or a dirty lens

Diversity across scenes: our webcams cover different types of
outdoor scenes, ranging from mountainous landscapes to ur-
ban scenes at different scales

High resolution: image size varies between 640×360 and 4000×
3000, with an average resolution of 1.8 megapixels

Accurate alignment: we align all images in each webcam to a ref-
erence frame by manually specifying correspondences and ap-
plying a homography warp.

In total, our dataset contains 8571 images from 101 webcams. In
the rest of this section, we determine which attributes are of interest
and describe how we annotate each image of our dataset.

3.1 Discovering transient attributes

There are a litany of high level properties that affect scene appear-
ance, but not all of them are common or easily perceptible (e.g.
“eclipse” would be extremely rare and “Tuesday” is probably hard
to recognize). We manually define an initial list of 92 scene at-
tributes by collecting a list of adjectives and nouns frequently re-
curring in written descriptions of outdoor scenes. While some ap-
peared in prior work [Patterson and Hays 2012], such as spatial en-
velope properties (“natural”, “enclosed area”), we add attributes re-
lated to lighting (“daylight”, “sunrise”), weather (“fog”, “rain”) and
season. We then reduce this list to 40 transient attributes by con-
ducting a crowdsourced experiment on Amazon Mechanical Turk.

Crowdsourced task. In each crowdsourcing task, we show
workers all images from a single webcam. For five attributes in
our initial list, along with their definition, we ask which ones ap-
pear in “all / some / none” of the images. Each task is repeated
multiple times to establish consensus.

Results suggest that most of the scene attributes described in prior

work do not vary much across images of one scene. In particular,
spatial envelope attributes such as “open area” are constant within
each scene. However, properties related to weather, lighting, or
emotions when viewing the image, can vary drastically across im-
ages of one scene.

Transient attributes. After discarding attributes that are rarely
present or do not vary within each scene, and grouping pairs of
attributes that are correlated or difficult to distinguish (e.g., sun-
rise/sunset), we obtain 40 transient attributes in five categories:
• lighting: sunrise/sunset, bright, daylight, etc.
• weather: sunny, warm, moist, foggy, cloudy, etc.
• seasons: spring, summer, autumn, winter
• subjective impressions: gloomy, soothing, beautiful, etc.
• additional attributes: active/busy, cluttered, dirty/polluted,

lush vegetation, etc.
The complete list of our 40 transient attributes, along with their
definitions and examples of positive/negative images, is shown in
the supplementary material.

3.2 Labeling images with transient attributes

Now that we have established a taxonomy of transient scene at-
tributes we are ready to annotate each database image. Many of our
attributes are continuous in nature, but it is difficult to ask anno-
tators to directly assign a real-valued score – what does 0.3 “fog”
look like? Another option would be to infer continuous labels from
many pairwise rankings, but our attributes often cluster around ex-
tremal values which would lead to many uninformative ties (e.g.
78% of images do not have the “night” attribute). Therefore we
ask each crowdsourced worker to drag each photograph into one
of four bins, according to “how much each image exhibits this at-
tribute”. Possible answers are “totally / a little / not at all”, corre-
sponding respectively to discrete label values 1 / 0.5 / 0. Workers
can mark uncertain images by dragging them to the “unsure” bin.
Each crowdsourced annotation task corresponds to one webcam and
one attribute.

Combining annotations. Although each worker provides a dis-
crete label for each image, we repeat the experiment multiple times
with different workers and combine their annotations in order to ob-
tain continuous attribute values between 0 and 1. Because workers
have varying reliability, we use control items (i.e., image-attribute
pairs with known answer) to evaluate each worker’s performance
then aggregate all workers’s annotations by weighting them based
on reliability.

We ask an expert to create control items by annotating 15 objective
attributes related to time-of-day and weather in 34 webcams. This
corresponds to 510 annotations tasks (12.6% of the total number
of annotation tasks). In each task, the expert labeled only images
for which he was extremely confident (i.e., the attribute is definitely
present or absent), leading to 4.5 positive and 7.7 negative annota-
tions on average. In total, the expert marked 6041 control image-
attribute pairs (1.8% of the total number of image-attribute pairs).

We model annotation noise and workers’s unreliability with the
bias-variance Gaussian model described by Liu et al. [2013]. The
discrete label xiaw produced for image i and attribute a by worker
w can be written as:

xiaw = µ∗ia + b∗w + ξiaw, ξiaw ∼ N (0, σ∗2w ) (1)

where µ∗ia is the true label of attribute a on image i, b∗w the bias of
worker w, σ∗2w the worker’s variance, and ξiaw represents annota-
tion noise.



Figure 2: Transient scene attributes allow us to characterize each image of a scene with a small number of intuitive dimensions. Each image
in a photo collection is represented as a point in attribute space, where each dimension corresponds to a scene property which can vary
with time, weather, or lighting conditions. Left: projection of 200 images of our dataset on the dominant plane of attribute space (obtained
by PCA); each image is represented as a dot, color-coded according to its value of the “sunny” attribute. Right: values of a few transient
attributes for three photographs. The scene appearance and its attributes vary widely between the three images, despite the fixed viewpoint.

We use the two-stage estimator described by Liu et al. [2013] to
estimate workers’ parameters and attribute labels. In the scoring
step, each worker’s bias and variance are estimated using the known
labels µ∗ia of the control items she answered. In the prediction step,
the aggregated value of each image-attribute pair is estimated by
combining the annotations of all workers, which are bias-corrected
and weighted according to their variance.

At the end of this step, we have obtained aggregated attribute labels
µia which range from 0 (attribute is not present) to 1 (attribute is
present), and the estimated bias and variance for each worker.

Identifying reliable workers. The estimated bias and variance
parameters also allow us to filter out unreliable workers. We fil-
ter out workers whose bias or variance is greater than one stan-
dard deviation above the average of all workers (|b∗w| > 0.13 or
σ∗w > 0.52) or who answered less than 50 control items. We
grant custom qualifications to reliable workers, giving them access
to more annotation tasks with a better pay (10.5 cents per task on
average).

We repeat each task until at least 5 reliable workers submit their an-
notations. In total, 288 workers completed 37924 annotations tasks.
All workers were paid for their work, but we only use annotations
from the 37 most reliable workers, who completed 24333 tasks.

3.3 Discussion

Attribute space visualization Transient attributes provide a
high-level description of scenes and can be used to organize large
collections of photographs such as our dataset. Figure 2 shows 200
images from one scene in our dataset, represented as colored dots
and laid out according to their attribute labels. This visualization
gives an overview of the attribute distribution in the collection.

Additional analysis We report the correlation between differ-
ent attributes and we compare our aggregated attribute values for
weather-related attributes to actual meteorological measurements
in the supplementary document.

Limitations While our dataset is fairly large in terms of number
of images it has only 101 unique scenes. By focusing on partic-
ular scenes we observe intra-scene variations and this enables our
attribute manipulation approach (Section 6); however, it also makes

our recognition task harder because we have fewer independent ex-
amples of attribute-scene combinations.

It is difficult to compare the strength of attributes between different
types of scenes. E.g. does 0.6 “hot” mean the same thing in a moun-
tain scene and a beach scene? Our annotation tasks are intra-scene
so we do not attempt to calibrate for these differences. However,
our manipulation method is scene dependent (mountain scenes will
be compared with mountain scenes) and does not rely on univer-
sally calibrated attributes.

4 Recognizing attributes in new images

The 40 attributes we define and annotate in the previous section are
more useful if we can automatically recognize them in new images.
In this section, we use the Transient Attribute Database to train and
evaluate regression and classification methods. We demonstrate
how attribute prediction enables the exploration of photo collec-
tions in Section 4.3.

4.1 Learning to recognize attributes

For each attribute a, our goal is to predict the attribute label µ̃i′a in
new images i′, given the aggregated labels µia in all images of our
dataset. Because our aggregated attribute labels are continuous we
use regression to predict continuous attribute labels on new scenes.
We train different non-linear predictors using the annotated images:

Support Vector Machines (SVM). As a baseline, we train an
SVM classifier for each attribute [Patterson and Hays 2012].
To produce a continuous output label µ̃i′a instead of a binary
label, we linearly scale the SVM confidence value into the
range of 0 to 1. To improve the performance of this baseline
we use only strong positive or strong negative examples for
training (µia ≥ 0.8 or µia ≤ 0.2).

Logistic regression (log reg). We use kernel logistic regres-
sion [Murphy 2012] to directly predict µ̃i′a.

Support Vector Regression (SVR). In Support Vector Regres-
sion, the loss function is based on deviation from a real valued
training label rather than a binary class label as in standard
SVMs. We train a ν-SVR model [Scholkopf et al. 2000] for
each attribute to predict µ̃i′a.

All three methods are trained with the same global image features
and individual kernels, which have been shown to work well in



Random split Holdout split

MSE AP MSE AP

SVM 0.045 0.95 0.070 0.77
log reg 0.063 0.93 0.093 0.75
SVR 0.018 0.97 0.043 0.80

Table 1: Comparison of Support Vector Ma-
chines (SVM), logistic regression (log reg), and
Support Vector Regression (SVR) for recognizing
attributes on two test splits. We use mean squared
error (MSE) and average precision (AP) to eval-
uate their performance.

0

0.2

0.4

0.6

0.8

1

da
ylig

ht
da

rk

rug
ge

d
du

ll
nig

ht

clo
ud

s

clu
tte

red
su

nn
y

da
wnd

us
k
lus

h
bri

gh
t

co
lor

ful

be
au

tifu
l
fog
mois

t
sto

rmco
ld
warm

midd
ay
bo

rin
g
wint

er ice

su
nri

se
su

ns
et

sp
rin

g

glo
wingrai

n
dir

ty
sn

ow dry

au
tum

n

su
mmer

str
es

sfu
l

mys
ter

iou
s
wind

y

ex
cit

ing

glo
om

y
bu

sy

se
nti

men
tal

so
oth

ing

flo
wers

Figure 3: Average precision for each attribute using SVR on the holdout test split. Our
regressors clearly score much higher than chance, indicated by the red lines.

scene classification [Xiao et al. 2010]. We use histograms of ori-
ented gradients (HOG), self-similarity features (SSIM), GIST, and
geometric context color histograms. We normalize individual ker-
nels and average them together in the same way as Patterson and
Hays [2012], who used this combination of kernels for scene at-
tribute recognition. We use Fisher Vector encoding [Perronnin et al.
2010] for HOG and SSIM as it performs better than Bag of Visual
Words; we compare these encoding methods in the supplementary
document.

4.2 Evaluation

We evaluate the performance of these methods on two different
training-test splits:

Random split where the test set contains random images selected
from all webcams (roughly 20% of the entire dataset),

Holdout split where the training and test sets contain 81 and 20
separate webcams, respectively.

Both splits contain a similar number of test images. However, the
holdout split is more difficult because the training set does not con-
tain images from the 20 scenes in the test set – the trained regression
methods are being evaluated on completely new scenes. We evalu-
ate the prediction performance with two metrics:

Mean squared error (MSE) is the squared error between µ̃ia and
µia averaged on all test set images for attribute a; it measures
how far a method’s prediction deviates from the ground truth
on average;

Average precision (AP) is the area under the precision-recall
curve or equivalently the average of precision over all recall
values; because AP is a measure of classification accuracy we
only test on the strong positives and negatives in the test sets.
We report AP because it is easier to interpret than MSE, but
we are most interested in minimizing MSE.

Table 1 reports the mean performance for each method, averaged
over all attributes. Unsurprisingly, it is much easier to predict at-
tributes when training data from the same scenes is available in the
“Random” test set. When test images are from completely held out
scenes in the “Holdout” test set the average precision for all three
methods is between 0.75 and 0.80. However, SVR has much lower
MSE than SVM because it uses the entire range of attribute labels
for training, whereas SVM uses only strong positive and strong neg-
ative examples. This suggests that both methods are equally useful
for predicting binary attributes (e.g., “ice, daylight”), while SVR
is the preferred method for more continuous attributes (e.g., “lush,
warm”).

Figure 3 shows the per-attribute AP of SVR on the holdout split. It
is compared to chance performance (indicated as red bars), which
equals the proportion of strong positives in the test set for each at-

Figure 4: Screen capture of our browsing interface, also shown
in the supplementary video. The user can interactively explore
the photo collection by retrieving an image (right) with “more” or
“less” of a specific attribute, such as “clouds”. Each new query
corresponds to a walk in a specific direction of the attribute space,
represented as an arrow in the color-coded visualization (left).

tribute. The AP of our predictors is many times higher than chance
on all attributes which indicates that we can achieve good perfor-
mance on entirely new scenes. The average precision is higher for
more objective attributes such as daylight or clouds and lower for
more subjective attributes such as mysterious and soothing.

The number of strong positive examples is critical for recognition.
For example, the bottom three attributes in AP (“sentimental, sooth-
ing, and flowers”) had among the lowest numbers of strong positive
examples. We achieve an overall AP of 0.86 when considering only
the 33 attributes with more than 200 strong positive examples.

4.3 Application: browsing photo collections

We apply our attribute recognition approach to browsing and
searching online photo collections. We extract the features for each
image of a photo collection and estimate its attribute labels using
the SVR regressors trained in Section 4.1.

In addition to the visualization shown in Figure 2, we propose new
user interfaces that leverage the estimated attribute labels:

An image retrieval interface which returns a subset of images
corresponding to the desired attribute query. The query con-
sists of an acceptable range of labels for the desired set of at-
tributes, and can be inferred from a query string (“some snow,
no clouds”). The results may be sorted by any attribute.

A browsing interface which enables the user to explore the col-
lection and progressively get closer to the desired image by
providing feedback, e.g. “more clouds”, then “less winter”.
Figure 4 shows a screen capture of this interface.

The supplemental video shows how these interfaces are used to
browse unlabeled photo collections.



5 Attribute-guided image editing

Our most ambitious goal is to allow casual users to edit images
with a simple user interface based on transient attributes. Given a
set of attributes that the user wants to modify in the scene (“make
it more snowy and cloudy”), we leverage the dataset constructed in
Section 3 to find example images that correspond to a similar scene
and exhibit the desired attribute change. We then edit the input
image using an analogy-based appearance transfer approach.

Finding similar scenes. Appearance transfer methods work bet-
ter when the input and exemplar images correspond to similar
scenes; e.g. transferring the appearance of a lake onto a corn field
is undefined. Our first step is to identify images in our database that
depict scenes similar to the input using a standard scene matching
approach. We compute the distance between the input and each
image in our dataset using some of the features described by Xiao
et al. [2010]: HOG, GIST, color histograms and tiny images. We
keep the 6 images with the lowest distance, with at most one image
per webcam. We call these match images. We found that this com-
bination of features works well with our database, yielding match
images that correspond to similar scenes with similar color distri-
butions and attributes. We experimented with explicitly matching
based on the predicted attributes of the input and the ground truth
attributes of the database images but this did not improve match
quality over the non-parametric scene matching approach.

Selecting target image(s). The next step is to choose target im-
ages that contain the desired attributes in the relevant webcams.
One challenge is that an attribute change such as “more winter” can
manifest as many distinct appearance variations: the ground may
become covered in snow or left bare, trees may lose their leaves if
they are deciduous, a body of water may or may not freeze. Each
“winter” image in our database features a different subset of these
transformations. We automatically identify a number of candidate
target images which contain the desired attribute, and let the user
decide which target image(s) correspond(s) the most to the desired
manipulation.

We now describe how we select the candidate target images shown
to the user. We represent the desired attribute changes as a per-
attribute offset ∆a, where ∆a is a scalar between −1 and 1 for
the attribute(s) a to change, and zero for all the other attributes.
For each match image M , we aim to find images from the same
webcam that are close to the attribute labels µMa shifted by ∆a. We
compute a score for each image i based on a weighted L2-distance:

D(i) =
∑
a

ωa(µMa + ∆a − µia)2 (2)

where ωa = 1 for the attributes to modify and 0.01 for other at-
tributes, in order to enforce the desired changes and encourage pre-
serving unconstrained attributes.

We keep the top 3 images for each webcam as candidate target
images. We show these images to the user on a web interface, and
she then selects the actual target image to be used for appearance
transfer. Alternatively, the fast method we propose in Section 6 can
generate multiple plausible results by using every candidate target
image; the user can then pick her favorite result.

Appearance transfer. At this stage, we have: (1) input image I;
(2) match image M , which depicts a similar scene in our database;
(3) target image T , which exhibits the desired attribute shift and
which comes from the same webcam as M . We now aim to modify
I in order to make it closer to T . We can use existing color transfer
methods [Reinhard et al. 2001; Pitié et al. 2005] to transfer the color

statistics of T to I . Alternatively, an analogy-based approach [Shih
et al. 2013] can leverage the variations betweenM and T and apply
them to I .

Regardless of the particular appearance transfer method utilized,
a key contribution of this work is that the Transient Attribute
Database coupled with the scene matching method and target se-
lection criteria in this section allows a non-expert user to modify
an image by specifying desired high-level properties – the transient
attributes. We spare the user from the task of finding suitable ex-
ample images manually which would be tedious and difficult with
thousands of images. Because we want our system to be inter-
active speed so that users can explore attribute variations induced
by different target images, we propose a novel appearance transfer
method in the following section. We show examples of attribute-
guided manipulations in Figures 6 and 7.

6 Learning local transforms for appearance
transfer

In this section, we propose a fast method to dramatically modify the
appearance of input image I by transferring the changes observed
between match image M and target image T . This is possible only
because images M and T come from the same webcam and have
been carefully aligned in our database.

Our approach is based on the observation that groups of similar
pixels in M tend to form groups of similar pixels in T . Similarly,
local transformations which turn patches in M into patches in T
tend to form clusters in the space of transform parameters (Fig. 5a).
We precompute transformations for pairsM :T in our database, and
store them in a transform library.

The challenge is to find which transform should be applied at each
pixel pquery of the input image I . We find pixels similar to pquery
in M based on local image features, and retrieve the corresponding
local transforms observed in the pair M :T (Fig. 5b). We then ap-
ply these transforms to I , thus transferring the appearance changes
learned from our database onto a new scene.

6.1 Precomputing the transform library

For each image pair M :T in our database, our goal is to estimate
local transformations which explain the color variations between
the two images. We use a locally linear model [Shih et al. 2013]
which relates the color of pixels in M to the color of pixels in T .
We denote by vk(M) the patch centered on pixel pk in the match
image and by vk(T ) the corresponding patch in the target image.
Both are represented as 3×N matrices in RGB color space; we use
patches of N = 5× 5 pixels. The local linear transform applied on
patch k is represented by a 3× 3 matrix Ak, and can be estimated
with a least-squares minimization:

argmin
Ak

‖vk(T )−Akvk(M)‖2F + γ ‖Ak −G‖2F (3)

where ‖·‖F denotes the Frobenius norm. The second term regular-
izes Ak with a global linear matrix G estimated on the entire image
(we use a small weight γ = 0.01). We obtain the optimal transform
Ak in closed form:

Ak = (vk(T )vk(M)ᵀ + γG) (vk(M)vk(M)ᵀ + γId3)−1 (4)

where Id3 depicts the 3 × 3 identity matrix. Using Equation 4,
we precompute the transformation corresponding to each pixel pk
in image pairs M :T . Note that this differs from the approach by
Shih et al. [2013] in which transformations are computed only af-
ter M and T have been warped into dense correspondence with the



Image feature space Transformation space

A1

A2

Match image Target image

A1

A2

p2

p1
Input image

pquery

Image feature space Transformation space

A1

Image feature space Transformation space

A1

A2

Match image Target image

A1

A2

p2

p1
Input image

pquery

Image feature space Transformation space

A1

(a) Precomputed local transformations

Image feature space Transformation space

A1

A2

Match image Target image

A1

A2

p2

p1
Input image

pquery

Image feature space Transformation space

A1

(b) Transformations to apply on the input image

Figure 5: Schematic overview of our appearance transfer method. (a) We learn local transformations by observing a pair of match-target
images. Transforms corresponding to similar regions in the match image tend to form clusters in transformation space. (b) Given a pixel
pquery in the input image, we retrieve the transformations corresponding to similar pixels in the match image. Those transforms form a
transformation pool, from which we draw the transforms to apply on the input image.

input image. Instead, we have computed the transformations on the
unmodified image pairs M :T and will now address the correspon-
dence between I and M :T .

6.2 Transforming the input image

Given all the transforms computed from the pair M :T , we need
to find which transform to apply on each pixel of I . Instead of
relying on dense correspondence between the input and match im-
age as Shih et al. [2013], we propose a simple algorithm which is
significantly faster yet yields convincing results and prevents color
inconsistencies between similar regions in the input image.

Segment matching. We first segment the input image into super-
pixels and compute the likelihood that each segment is ‘ground’,
‘sky’, ‘vertical’, or ‘porous’ [Hoiem et al. 2007]. We also compute
color and texton histograms for each segment. We calculate the
distance from each input segment to precomputed segments in the
match image using L2 distance for the surface likelihoods and χ2

distance for the histograms. Finally, we select the best matched
segments with the lowest distance to be in correspondence.

Pool of transforms. For each input segment, we retrieve the pre-
computed transforms Ak corresponding to pixels pk in the match
segments. This yields a pool of transforms, which model local
changes that have been observed in the transformation library on
image regions similar to the input segment. These transformations
are mostly consistent and tend to form clusters in transformation
space (Figure 5b). We found that applying outlier rejection in the
space of transformations can improve the manipulation results on a
few images. We apply mean-shift clustering [Comaniciu and Meer
2002] and keep only transforms in the largest cluster. We use band-
width σoutliers = 0.09 for all results.

Applying the transforms. Applying a single transform per seg-
ment would yield artifacts at the segment boundaries. Instead, we
assign a transformation to each pixel and use edge-aware filtering
to smooth the transformations spatially. First, at each pixel we ran-
domly select a transform from the corresponding segment’s trans-
formation pool (alternatively, selecting the mean transform yields
comparable results). Then, we apply a cross-bilateral filter [Chen
et al. 2007] which smooths each component of the transformation
matrices according to edges in the input image. At each pixel p, the
filtered version of the transform is:

Ãp =
1

Wp

∑
q∈N(p)

Gσs (‖p− q‖) Gσr (
∣∣Ip − Iq∣∣) Ap (5)

which is a simple weighted average over a neighborhood where the
weight is the product of a Gaussian on the spatial distance in pixels

(Gσs ) and a Gaussian on the pixel value difference (Gσr ) of the
grayscale input image. We use σs = 14, σr = 0.1 for all results.
We obtain the output image by applying the filtered transforms on
each pixel of the input image. In order to generate a high-definition
output image, we can similarly upsample the transforms [Kopf et al.
2007] before applying them to a full-size input image.

Global consistency. Pixels in consistent regions (e.g., grass, sky,
or building facade), should be transformed similarly across the en-
tire image. Global color transform methods handle this well, since
they operate on the entire image. However, methods based on spa-
tial correspondences are sensitive to this issue, which can yield
low-frequency color inconsistencies (see the result from Shih et
al. [2013] on Fig. 8d). The edge-aware filtering we used in pre-
vious paragraph reduces discrepancies between adjacent segments,
but it cannot enforce that similar regions in different parts of the
image undergo the same transform.

We propose an additional step in order to enforce global consis-
tency. After segment matching, we use mean shift clustering to
group similar segments according to their mean RGB color; we
use bandwidth σglobal = 0.13 for all results. We then merge the
transformation pools from all these segments. This ensures that the
transformations applied on similar segments will be drawn from the
same pool, which addresses the consistency problem Fig. 8h).

6.3 Results

Attribute-guided image editing. We present results for
attribute-guided appearance transfer in Figure 6. For each input
image, we choose one or two attributes that we would like to
change, then select a target image using the interface described in
Section 5. Our method changes the scene appearance dramatically
yet produces plausible results. Notice how, in (a), the grass
becomes drier but the cabin remains untouched. In the “snowy and
night” example (b), our method covers some of the fine texture
details of the grass with snow. More subjective attributes such as
“gloomy” can also be manipulated (f).

By manipulating a single input image with several different at-
tribute queries, we can synthesize plausible images of the scene at a
different time of day, season, or weather condition. We show such
virtual timelapses in Figure 7 and in the supplementary video.

Comparison of appearance transfer methods. We compare
our appearance transfer method with three approaches in Figure 9,
using the code released by their authors. Note that none of these ap-
pearance transfer methods natively support the high-level attribute
manipulations being demonstrated; in each test case, we use the
interface described in Section 5 to specify the attribute to modify
and select one of the proposed target images. All methods perform



(a) More “dry” (input image: Roland Schweizer) (b) More “snowy” and “night” (input image: aljabak85)

(c) More “rain” (input image: Andrew Filer) (d) More “sunrise/sunset” (input image: sabreguy29)

(e) More “autumn” and “bright” (input image: Charlie Dave) (f) More “gloomy” (input image: Michael Freyermuth)

Figure 6: Results of our method for six attribute modifications. In each case, a single input photograph is used (left) and the user selects a
target image proposed by our attribute-guided interface (Section 5). Our appearance transfer method (Section 6) then synthesizes an image
with the desired attributes (right). Image regions are modified differently according to their semantic content, such as grass or mountains (e).

(a) Input image: Vlad Butsky (b) More “storm” (c) More “moist” (d) More “glowing”

Figure 7: Our appearance transfer method can generate multiple variations of a single input photograph by varying its attributes. The
supplementary video shows virtual timelapses of scenes with different seasons, time of day, and weather conditions.

relatively well on the “more cloudy” example, which can be well
approximated with a global change in color (generally darker, with
less contrast). However, global color transfer methods do not per-
form well on appearance changes that involve modifying the scene
materials or texture (“more winter”, middle row). In contrast, our
method and Shih et al. [2013] plausibly cover the ground with snow
because they leverage variations between match and target images.
Only our method manages to hallucinate fog in the top example.

We conduct a user study to further compare different appearance
transfer techniques. We compare our fast local method to global
transfer [Reinhard et al. 2001] and local transforms [Shih et al.
2013] on 60 attribute manipulations, shown on the project web-
site along with the corresponding match/target images. We used 15
participants in a lab environment; average study duration was 37
minutes. We showed one pair of result images at a time and asked
the following two questions: “Which of these images looks more

like a real photograph?” and “Which image more convincingly
seems to have attribute x?” Participants gave 5400 total pairwise
evaluations. According to this study:

• Global color transfer results look more like real photographs,
compared to local transfer results (87% preference compared
to Shih et al. [2013] and 81% compared to ours, respectively;
p < 0.005 for both). While global changes are less likely
to produce artifacts, they are also much less expressive. Our
approach, which learns from a pair of match-target images
rather than a single target, produces more convincing attribute
changes 70% of the time (p < 0.005).

• Compared to Shih et al. [2013], our results more often look
like real photographs (71%, p < 0.005). Both methods are
equally capable of convincing attribute manipulations (52%
preference towards ours, not statistically significant).



(a) Input image (b) Match from [Shih et al. 2013] (c) Target from [Shih et al. 2013] (d) Result from [Shih et al. 2013]

(e) No consistency, no filtering (f) No consistency, with filtering (g) With consistency, no filtering (h) With consistency, with filtering

Figure 8: Intermediate results of our approach without and with global consistency / bilateral filtering (e-h). Our final result is shown in (h).
The input, match, and target images (a-c) are from Shih et al. [2013] and are not obtained with our attribute-guided approach (Section 5).
Note that our global consistency step addresses the low-frequency halo artifacts that are visible in their result (d) and in (e-f).
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Figure 9: Comparison with appearance transfer methods for three attribute modifications. For each input photograph, all methods use the
same target image, retrieved from our annotated dataset using the attribute-guided approach described in Section 5.

Choice of target image. We show in Figure 10 that our output
can be quite sensitive to the choice of target image. While we can
produce results completely automatically, we argue that this simple
user control is useful for exploring the space of plausible attribute
manipulations. In this figure, we use an image from one of our we-
bcams as the input; this allows us to compare to two “ground truth”
images of the same webcam that have strong positive “cold” labels.
These real photographs with the same attribute exhibit significant
variations (b), just like the output of our appearance transfer (c).
Our method allows the user to narrow down the set of target images
to be used, by specifying that some attributes should not be changed
(Section 5).

Performance. Our unoptimized Matlab implementation precom-
putes local transforms in about 20 seconds for a pair of images
480px high; we store the result for several pairs of each webcam

into the transform library. Segmenting and extracting features for a
new input image takes 15-20s and is done only once, before all at-
tribute manipulations. At runtime, retrieving candidate transforms
for all segments takes 2s, clustering transforms about 2s, and about
1s for filtering the result transforms and producing the output. This
is faster than the method by Shih et al. [2013] which processes com-
parable images in 57s.

Limitations. Like all data-driven techniques, ours is limited by
the richness of the training set. Because we focus on outdoor
scenes, we do not expect recognition or manipulation to work well
on images focused on objects (e.g., a car or a close-up façade of a
single building, see Figure 11 top) or unusual scenes (e.g., pictures
framed to contain no sky or overly processed photos). Our appear-
ance transfer method based on local color changes cannot reliably
add detail that did not exist in the input, e.g., add grass texture to



(a) Input image

(b) Match, target, result images (c) Real photos with “cold” (a) Input images (b) Match, target, results (failure cases)

image: Shih et al. [2013]

Figure 10: Variance in scene appearance among images with similar scene at-
tributes. Input image (a) is chosen from one of our webcams, which allows us to
show two “ground truth” images of the same scene with the “cold” attribute (c).
Applying our appearance transfer method with two “cold” target images yields
results that are different, yet both plausible (b).

(a) Input image

(b) Match, target, result images (c) Real photos with “cold” (a) Input images (b) Match, target, results (failure cases)

image: Shih et al. [2013]

Figure 11: Failure cases. Top, more “night”: inac-
curate local matching yields artifacts in image manip-
ulation if the input and match images are too different.
Bottom, more “summer”: our local transforms cannot
add detail not present in the input, e.g. grass texture.

a snow-covered ground for “more summer” (Figure 11, bottom).
However, our database contains training examples for these scenar-
ios; we expect future appearance transfer techniques to handle these
transformations better. Adding high frequency clouds to a clear sky
is also problematic, but might by addressed by techniques designed
to transfer skies across images [Tao et al. 2009].

7 Conclusion

We have presented the first dataset containing thousands of images
annotated with a number of perceived scene properties that vary
with time. We have used those labels to train regressors in order to
recognize transient attributes in new images, enabling new possi-
bilities for browsing photo collections. Lastly, we have developed
a simple and fast appearance transfer method which can learn from
variations of appearance observed in our dataset to modify tran-
sient attributes in novel scenes. We are confident that our Transient
Attribute Database can support future research in attribute recog-
nition and manipulation beyond the first steps we have presented
here. We share our annotated database and attribute predictors with
the community on our project website:

http://transattr.cs.brown.edu
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