
Supplementary document: Transient Attributes
for High-Level Understanding and Editing of Outdoor Scenes

Pierre-Yves Laffont Zhile Ren Xiaofeng Tao Chao Qian James Hays

Brown University

Figure 1: Overview of the 101 webcams annotated in our Transient Attribute Database.

This document contains additional details and figures on:

Our Transient Attribute Database: selection of representative
images (Section 1.1), screen captures of our crowdsourced
annotation tasks (Section 1.2), comparison of our aggregated
labels to meteorological data (Section 1.3), and correlation
between attributes (Section 1.4).

Our attribute recognition method: description of the image fea-
tures and encoding methods used (Section 2).

In addition, our project website1 contains:

• the list of our 40 transient attributes along with their definition
and positive/negative examples

• all 8571 images from our database with their attribute labels

• our trained attribute regressors (with Fisher Vector encoding
and spatial pyramids), along with train/test splits

• results of our appearance transfer method on 60 test cases
for different attribute manipulation queries, along with the
match/target images used, and comparison to three other
methods

1http://transattr.cs.brown.edu

1 The transient attribute database

1.1 Selecting representative images

For each webcam in our dataset we select 60-120 high quality
frames which are representative of the appearance variations of the
scene. For the first 35 webcams in our dataset, we used the iterative
approach of Abrams et al. [2011] to find “interesting” frames, then
manually filtered the results using a web-based interface. The an-
notations gathered for these webcams allowed us to train an initial
classifier for each attribute. For each new webcam to add in our
dataset, we run these classifiers on a thousand randomly selected
to estimate their attribute labels, then select around 90 images that
exhibit the most attribute variations with a greedy algorithm. Note
that this process was used to ensure the selected images exhibit lots
of appearance variations; we then discard the output of the initial
classifiers, and rely on the annotations collected for those new we-
bcams in order to improve attribute recognition performance.

1.2 Crowsourcing experiments

Figures 2-3 show the user interfaces that we developed for our
crowdsourcing experiments. Both tasks were run on Amazon Me-
chanical Turk. We displayed the original webcam images in these
tasks, i.e. before they are manually aligned for the image manipu-
lation.



Figure 2: User interface for the first crowdsourcing experiment
(discovering transient scene attributes).

Figure 3: User interface for the second crowdsourcing experiment
(annotating images with their attributes).

1.3 Comparison to weather measurements

We compare the aggregated labels of weather-related attributes to
the weather data recorded by Weather Underground2, for a subset
of webcams with known GPS position.

Figure 4 shows the aggregated label for the attribute “cloud”, for
each group of images corresponding to different reported “sky con-
ditions”. As expected, the mean attribute label is higher for images
reported as more cloudy by weather underground. The curve does
not fully extend to the [0− 1] range however; one reason being that
the reported weather data is often be inaccurate [Islam et al. 2013].

Unsurprisingly, other attributes can be much harder to recognize.
For example, we did not find significant difference when comparing
the labels of attribute “dry” (resp. “windy”) on the images with
lowest 10% and highest 10% measured humidity (resp. wind speed)
in each scene. This is not a problem for our approach however – we
focus on perceived attributes rather than ground truth properties of
the scene.

Figure 4: Mean value of the aggregated labels for attribute
“clouds”, with respect to the “sky condition” label reported by
Weather Underground. We use images from 6 geolocated webcams.
Bars represent the 95% confidence intervals.

2http://www.wunderground.com/weather/api/



1.4 Attribute correlation

In order to discover semantic relationships between attributes, we
compute the Pearson linear correlation coefficient between each
pair of attributes. The resulting correlation matrix is shown in Fig-
ure 5. Unsurprisingly, related attributes such as dark/night have a
highly positive correlation, while inversely related attributes such
as warm/snow have a strongly negative correlation.

Figure 5: Attribute correlation matrix after aggregating annota-
tions, color-coded according to the scale on the right. Black cells
correspond to unreliable comparisons where p-value > 0.05.

2 Attribute recognition

2.1 Image features for attribute recognition

The features we use for recognition are global image represen-
tations and local descriptors that are known to be effective for
scene classification (please refer to the full description by Xiao et
al. [2010]):

• HOG 2x2: At every 8 pixels, a 31-dimensional histogram of
oriented gradients (HOG) features is computed. Neighboring
HOG descriptors are concatenated to form 124-dimensional
2x2 HOG patches.

• SSIM: At every 5 pixels, 30-dimensional self-similarity
(SSIM) descriptors are calculated by quantizing the local
patch correlation map into 30 radial bins (3 radii at 10 angles).

• GIST: The output magnitudes of 24 multiscale oriented Ga-
bor like filters are linearly combined to form this GIST image
representation.

• Geometric context color histograms: A 784-dimensional
LAB color histogram is extracted from the whole image. Sim-
ilar histograms are also extracted for each geometric context
class (ground, sky, vertical, and porous), with each color sam-
ple’s influence being weighted by the probability of that geo-
metric class at the sample’s location.

Patterson and Hays [2012] use Bag of Visual Words encoding for
both HOG and SSIM, after the features are computed. HOG and
SSIM features are translated to visual words based on visual word
vocabularies (of size 300) generated by k-means clustering. For
both features, this visual word representation is computed at three
different spatial pyramid levels: 1x1, 2x2, and 4x4. Individual ker-
nels are then generated using L1 distance for the HOG features and
χ2 distance for the SSIM, GIST, and geometric context color his-
togram features. Finally, individual kernels for all features are nor-
malized and linearly combined to form a combined feature kernel.

We can use this combination of features and kernels for training pre-
dictors to recognize transient attributes; we report the performance
of three predicting methods (SVM, logistic regression, and SVR, as
in the main paper) in Table 2. We further extend this previous work
by improving on the feature encoding methods for HOG and SSIM.

2.2 Fisher Vector encoding for HOG and SSIM

The features and kernels described in Section 2.1 are useful for rec-
ognizing attributes, as shown by Patterson and Hays [2012]. How-
ever, the Bag of Visual Words approach for encoding HOG and
SSIM can be lossy, even when soft binning is employed.

We replace Bag of Visual Words with Fisher Vector encoding to
better address this weakness. Fisher Vector encoding uses a gen-
erative model to represent the visual vocabulary of image features.
For a particular image, a Fisher Vector encodes how the parameters
of that model should change to better represent that image’s fea-
tures. As Perronnin et al. [2010], we use a Gaussian Mixture Model
(GMM) as the generative model on the image features. This allows
for Fisher Vector encoding to capture 1st and 2nd order statistics
(mean and covariance of the GMM) from the features, instead of
just a histogram count as with Bag of Visual Words. However, a
Fisher Vector image representation inherently has no spatial con-
text. Therefore, we augment the spatial context with a conventional
spatial pyramid approach.



Random split Holdout split

MSE AP MSE AP

SVM (bag of words) 0.048 0.95 0.077 0.75
log reg (bag of words) 0.063 0.90 0.094 0.72
SVR (bag of words) 0.020 0.96 0.046 0.77

Table 2: Recognition performance when using Bag of Words en-
coding for HOG and SSIM. Performance on both splits is worse
than with Fisher Vector encoding (shown in Table 1 of the main
paper). We use mean squared error (MSE) and average precision
(AP) to evaluate their performance.

Implementation. In our implementation, we use the VLFeat
library implementations of GMM and Fisher Vector encod-
ing [Vedaldi and Fulkerson 2010]. First, prior to any training or en-
coding, we reduce the 124-dimensional HOG 2x2 descriptor down
to DHOG = 64 dimensions using principal component analysis.
This intuition comes from [Perronnin et al. 2010], where the authors
showed that reducing high dimensionality features could be benefi-
cial, especially in reducing the sparseness and size of the resulting
Fisher Vector encoding. However, we do not find it necessary to
apply dimensionality reduction for SSIM, since SSIM already has
only DSSIM = 30 dimensions.

In practice, for the HOG (resp. SSIM) local features, we use on
the order of 106 descriptors from randomly sampled images to
train a GMM with K = 256 Gaussians; Perronnin et al. [2010]
used a similar number of randomly sampled SIFT descriptors for
training. This results in a 32768-dimensional Fisher Vector encod-
ing for HOG and a 15360-dimensional Fisher vector encoding for
SSIM. We further apply a power normalization with an exponent
of a = 0.3 and perform L2 normalization. Although tuning these
three parameters (the number of Gaussians K, the input HOG fea-
ture dimensionality DHOG, and the power normalization factor a)
can improve performance, we found that the recognition perfor-
mance on the Transient Attribute Database is fairly robust to these
parameter changes.

Next, we incorporate spatial pyramids to add spatial context to the
otherwise global Fisher Vector representation. As shown by Per-
ronnin et al. [2010], this is a simple but effective way to improve
performance. With spatial pyramids, the image is subdivided into
multiple levels of image regions, and a Fisher Vector is extracted
from the low-level features in each region. We experimented with
different basic configurations of spatial pyramids, and empirically
determined that the best basic spatial pyramid configuration is to
divide the image into thirds (top third, middle third, bottom third).
This makes sense because this matches the configuration of many
outdoor photographs where the sky is in the top third and the ground
is in the bottom third of the image. Finally, the Fisher Vectors en-
codings from all four regions (i.e., whole image + the three thirds)
are concatenated to form the final encoding. Each Fisher Vector
encoding is normalized separately before concatenation.

Encoding all N images in the database yields a matrix of N stacked
Fisher encodings; the matrix is of size N × 131072 for HOG and
N × 61440 for SSIM. We multiply this matrix of encodings with
its transpose to create a feature kernel. We use those feature ker-
nels in replacement of the kernels generated for HOG and SSIM in
Section 2.1: we linearly combine them with our existing normal-
ized kernels for GIST and geometric context color histograms, with
equal weights, to form the combined feature kernel.

Recognition rate. Replacing the Bag of Visual Words encoding
with Fisher Vector encoding for the HOG and SSIM features im-
proves performance on both training-test splits, as seen by compar-
ing Table 1 (in the main paper) with Table 2. In particular, average
Precision increases from 0.77 to 0.80 when using SVR for predict-
ing attribute values on the holdout test split.

Performance. The Fisher Vector encoding run time is compara-
ble to using Bag of Visual Words. For a new image, recognizing all
attributes takes less than 20 seconds on a machine with 32 cores at
2GHz. This includes generating the combined feature image repre-
sentation, including Fisher Vectors, and then predicting labels with
trained SVR models. However, the memory requirements for Fisher
Vector encoding are greater due to its relatively higher dimension-
ality. Uncompressed, the HOG and SSIM Fisher Vector encodings
for our entire dataset occupy about 6.1 GB in memory. Despite
this slight drawback, Fisher Vector encoding is a valuable tool for
building a more effective combined feature kernel. We release our
trained predictors on the project website.

References

ABRAMS, A., FEDER, E., AND PLESS, R. 2011. Exploratory
analysis of time-lapse imagery with fast subset pca. In WACV’11.

ISLAM, M., JACOBS, N., WU, H., AND SOUVENIR, R. 2013. Im-
ages+weather: Collection, validation, and refinement. In CVPR
Workshop on Ground Truth (CVPRW).

PATTERSON, G., AND HAYS, J. 2012. Sun attribute database:
Discovering, annotating, and recognizing scene attributes. In
CVPR.

PERRONNIN, F., SÁNCHEZ, J., AND MENSINK, T. 2010. Im-
proving the fisher kernel for large-scale image classification. In
ECCV.

VEDALDI, A., AND FULKERSON, B. 2010. Vlfeat: An open and
portable library of computer vision algorithms. In International
Conference on Multimedia.

XIAO, J., HAYS, J., EHINGER, K. A., OLIVA, A., AND TOR-
RALBA, A. 2010. Sun database: Large-scale scene recognition
from abbey to zoo. In CVPR.


